270299 VO Basics of Informatics for Chemistry and Biology (2022W)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
max. 15 participants
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Erster Termin am 14.10!
Friday
07.10.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
14.10.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
21.10.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
28.10.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
04.11.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
11.11.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
18.11.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
25.11.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
02.12.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
09.12.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
16.12.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
13.01.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
20.01.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Friday
27.01.
11:30 - 13:00
Seminarraum 11, Währinger Straße 29 2.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
Oral exam.
Due to the COVID situation exams will be held online via BigBlueButton.
Due to the COVID situation exams will be held online via BigBlueButton.
Minimum requirements and assessment criteria
Familiarity with basic computer science concepts.
Examination topics
All lecture content
Reading list
Slides and course materials will be made available via moodle.
Association in the course directory
BC-DAT I-1, IMA I-1
Last modified: Su 29.01.2023 17:09
complexity analysis, with emphasis on algorithms relevant for Chemistry and
Biology such as string search and graph algorithms.
Concept of algorithm and data types. Complexity analysis of algorithms;
NP-completeness and computability; search methods and heuristics.
Course material: Lecture notes