270305 PS Modern methods for materials characterization (2022S)
proseminar
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Tu 01.02.2022 08:00 to We 30.03.2022 09:00
- Deregistration possible until We 30.03.2022 09:00
Details
max. 8 participants
Language: German
Lecturers
Classes
IMPORTANT: In order to find dates for the experimental work (one half-day per week throughout the semester) we need to meet in a video conference on Friday 11th March at 10:00. Please be present as we will decide on the lab dates suitable for all participants and supervisors. Changes at a later time will not be possible. The video conference will be held via https://jm01.univie.ac.at/praktchemiess21
Information
Aims, contents and method of the course
Assessment and permitted materials
The judging of students is derived from the activity in seminars, the engagement during the experiments, and from the result of final questioning.
Minimum requirements and assessment criteria
Correct handling of modern research facilities, good physico/chemical understanding, suitable documentation of experiments, and the specific preparation for master work and/or a doctoral thesis in materials chemistry.
Examination topics
The lab course uses modern audio-visual tools and state-of-the-art research instruments.
Reading list
1) M.M. Woolfson, "An Introduction to X-ray Crystallography", Cambridge University Press, Online Publication January 2010; Online ISBN:9780511622557 ; Paperback ISBN:97805214235952) G. H. Stout and L.H. Jensen "X-ray Structure Determination, A Practical Guide", 2nd Ed. J. Wiley&Sons, NY, 1989
Association in the course directory
PC-1, MC-2, B.2, D.2, Doktorat
Last modified: We 30.03.2022 08:49
The course intends to provide a general introduction into the tasks of crystal structure determination (a) from X-ray powder data as well as (b) from X-ray single crystal data.
These techniques will be demonstrated on selected examples.
The course is highly recommended as a specific preparation for master work and/or a doctoral thesis in materials chemistry.Contents (part in Physical Chemistry): Introduction to production and properties of X-rays. Fundamental principles of X-ray diffraction. Indexation of X-ray powder patterns . Techniques and interpretation of powder diffraction data; Methods of solving the phase problem. Direct methods for structure determination and refinement from X-ray single crystal data . Introduction to EPMA (Electron Microprobe Analysis).
The introductory course is accompanied by tutored exercises on these major tasks and by concomitant training in various computer programs (Oscail, Atoms).