Universität Wien

280087 VU MA-ERD-W-1.1 Paleozoic Biodiversity, Stratigraphy and Events (PI) (2021S)

Continuous assessment of course work
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 15 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Digital lectures are expected for March and April!
[Digital lectures: due to COVID extended until mid of June!]

  • Monday 01.03. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 08.03. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 15.03. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 22.03. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 12.04. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 19.04. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 26.04. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 03.05. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 10.05. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 17.05. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 31.05. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 07.06. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 14.06. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 21.06. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II
  • Monday 28.06. 10:15 - 12:00 Digital
    Hybride Lehre
    Seminarraum Geochemie 2C193 1.OG UZA II

Information

Aims, contents and method of the course

The Paleozoic Era (541 - 252 Ma) represents the timespan, when early marine communities produced first skeleton-bearing metazoans, when life invaded land and plants developed rooting systems that produced real soil. A short overview of Paleozoic paleogeography, paleoclimatic development and the evolution of life from Cambrian to Permian will be presented.

There existed several groups of deep-time index fossils for different marine and continental habitats. Among these, trilobites, graptolites, conodonts and radiolarians represent the most important groups. Core index fossils, their stratigraphic range and preferred habitat are introduced.

Highlighted are major Paleozoic global crisis and its effects on marine and terrestrial life and diversity. Trigger and cause of severe paleoenvironmental changes are explored based on marine geochemistry, sedimentological evidence and sea-surface-temperature estimates from conodont apatite and brachiopods across selected extinction events, e.g., the Hirnantian glaciation or the Middle Devonian greenhouse episodes.

Assessment and permitted materials

PI - Knowledge evaluation will be undertaken during online lessons and hands-on-tutorials.

Minimum requirements and assessment criteria

no specific qualification required.

Examination topics

Paleozoic Stratigraphy; biostratigraphic relevant fossil groups (e.g., conodonts, trilobites, foraminifers); extinction events.

Reading list

STRATIGRAPHY
Gradstein, F.M., Ogg, J.G., Schmitz, M.D., & Ogg, G.M. (eds) (2012). The geologic time scale 2012, Elsevier, 1144 pp.

BIODIVERSITY
Copper, P. (2002). Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. 181–238. In: Kiessling, W., Flügel, E. & Golonka, J. (eds) Phanerozoic Reef Patterns. Society of Economic Paleontologists and Mineralogists Special Publication, 72.

Joachimski, M.M., Lai, X.-L., Shen, S.-Z., Jiang, H.-S., Luo, G.-M., Chen, B., Chen, J. & Sun, Y.-D. (2012). Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40, 195–198.

McGhee, G.R., Clapham, M.E., Sheehan, P.M., Bottjer, D.J. & Droser, M.L. (2013). A new ecological-severity ranking of major Phanerozoic biodiversity crises. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 260–270.

Sepkoski Jr., J.J. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7, 36–53.

PALEOMAPS
Golonka, J. (2002). Plate-tectonic maps of the Phanerozoic. 21–75. In: Kiessling, W., Flügel, E. & Golonka, J. (eds) Phanerozoic reef patterns. Society of Economic Paleontologists and Mineralogists Special Publication, 72.

Kiessling, W., Flügel, E. & Golonka, J. (2003). Patterns of Phanerozoic carbonate platform sedimentation. Lethaia, 36 (3), 195–225.

Scotese, C.R. & McKerrow, W.S. (1990). Revised world maps and introduction. 1–21. In: McKerrow, W.S. & Scotese, C.R. (eds) Palaeozoic Palaeogeography and Biogeography. Geological Society, London, Memoir, 12.

Association in the course directory

Last modified: Fr 12.05.2023 00:22