280222 VU Climate Change Impacts on Soil Organic Matter: Wildfires, Permafrost Thaw, and Advanced Techniques (2024S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 05.02.2024 00:00 to Tu 27.02.2024 23:59
- Registration is open from Th 29.02.2024 00:00 to We 06.03.2024 23:59
- Deregistration possible until Su 31.03.2024 23:59
Details
max. 15 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.06. 11:30 - 13:00 Seminarraum Geochemie 2C193 1.OG UZA II
- Tuesday 04.06. 13:15 - 14:45 Seminarraum Geochemie 2C193 1.OG UZA II
- Thursday 06.06. 11:30 - 13:00 Seminarraum Geochemie 2C193 1.OG UZA II
- Thursday 06.06. 13:15 - 14:45 Seminarraum Geochemie 2C193 1.OG UZA II
- Tuesday 11.06. 11:30 - 13:00 Seminarraum Geochemie 2C193 1.OG UZA II
- Tuesday 11.06. 13:15 - 14:45 Seminarraum Geochemie 2C193 1.OG UZA II
- Thursday 13.06. 11:30 - 13:00 Seminarraum Geochemie 2C193 1.OG UZA II
- Thursday 13.06. 13:15 - 14:45 Seminarraum Geochemie 2C193 1.OG UZA II
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
Based on a percent scale where 100% is the highest obtainable grade the students will be evaluated as follows: In-class participation (10%), Homework (40%), and Project presentation (50%).
Examination topics
This class will meet four times over a two-week period. Grading will be based on one assignment in which students will present a small group project orally in class and one homework.
The homework will consist of multiple questions that relate to the carbon biogeochemistry learnt in-class Students will be given one week to prepare a small group project that will focus on the impact of climate change on carbon cycling. This project will be evaluated based on an oral defense of the project.
The homework will consist of multiple questions that relate to the carbon biogeochemistry learnt in-class Students will be given one week to prepare a small group project that will focus on the impact of climate change on carbon cycling. This project will be evaluated based on an oral defense of the project.
Reading list
Recommended Literature:
Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P. S. Chapter One - Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. In Advances in Agronomy, Sparks, D. L. Ed.; Vol. 130; Academic Press, 2015; pp 1-140. https://doi.org/10.1016/bs.agron.2014.10.005Get rights and content
Lehmann, J., Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015). https://doi.org/10.1038/nature16069Bahureksa, W.; Tfaily, M. M.; Boiteau, R. M.; Young, R. B.; Logan, M. N.; McKenna, A. M.; Borch, T. Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. Environ Sci Technol 2021, 55 (14), 9637-9656. https://pubs.acs.org/doi/10.1021/acs.est.1c01135AminiTabrizi, R.; Wilson, R. M.; Fudyma, J. D.; Hodgkins, S. B.; Heyman, H. M.; Rich, V. I.; Saleska, S. R.; Chanton, J. P.; Tfaily, M. M. Controls on Soil Organic Matter Degradation and Subsequent Greenhouse Gas Emissions Across a Permafrost Thaw Gradient in Northern Sweden. Frontiers in Earth Science 2020, 8, Original Research. https://www.frontiersin.org/articles/10.3389/feart.2020.557961/fullPellegrini, A.F.A., Harden, J., Georgiou, K. et al. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15, 5–13 (2022). https://doi.org/10.1038/s41561-021-00867-1Bahureksa, W.; Young, R. B.; McKenna, A. M.; Chen, H.; Thorn, K. A.; Rosario-Ortiz, F. L.; Borch, T. Nitrogen Enrichment during Soil Organic Matter Burning and Molecular Evidence of Maillard Reactions. Environ Sci Technol 2022, 56 (7), 4597-4609. DOI: 10.1021/acs.est.1c06745Patzner, M. S.; Mueller, C. W.; Malusova, M.; Baur, M.; Nikeleit, V.; Scholten, T.; Hoeschen, C.; Byrne, J. M.; Borch, T.; Kappler, A.; et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat Commun 2020, 11 (1), 6329. https://doi.org/10.1038/s41467-020-20102-6Patzner, M. S.; Logan, M.; McKenna, A. M.; Young, R. B.; Zhou, Z.; Joss, H.; Mueller, C. W.; Hoeschen, C.; Scholten, T.; Straub, D. et al. Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment 2022, 3 (1), 76. https://doi.org/10.1038/s43247-022-00407-8
Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P. S. Chapter One - Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. In Advances in Agronomy, Sparks, D. L. Ed.; Vol. 130; Academic Press, 2015; pp 1-140. https://doi.org/10.1016/bs.agron.2014.10.005Get rights and content
Lehmann, J., Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015). https://doi.org/10.1038/nature16069Bahureksa, W.; Tfaily, M. M.; Boiteau, R. M.; Young, R. B.; Logan, M. N.; McKenna, A. M.; Borch, T. Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. Environ Sci Technol 2021, 55 (14), 9637-9656. https://pubs.acs.org/doi/10.1021/acs.est.1c01135AminiTabrizi, R.; Wilson, R. M.; Fudyma, J. D.; Hodgkins, S. B.; Heyman, H. M.; Rich, V. I.; Saleska, S. R.; Chanton, J. P.; Tfaily, M. M. Controls on Soil Organic Matter Degradation and Subsequent Greenhouse Gas Emissions Across a Permafrost Thaw Gradient in Northern Sweden. Frontiers in Earth Science 2020, 8, Original Research. https://www.frontiersin.org/articles/10.3389/feart.2020.557961/fullPellegrini, A.F.A., Harden, J., Georgiou, K. et al. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15, 5–13 (2022). https://doi.org/10.1038/s41561-021-00867-1Bahureksa, W.; Young, R. B.; McKenna, A. M.; Chen, H.; Thorn, K. A.; Rosario-Ortiz, F. L.; Borch, T. Nitrogen Enrichment during Soil Organic Matter Burning and Molecular Evidence of Maillard Reactions. Environ Sci Technol 2022, 56 (7), 4597-4609. DOI: 10.1021/acs.est.1c06745Patzner, M. S.; Mueller, C. W.; Malusova, M.; Baur, M.; Nikeleit, V.; Scholten, T.; Hoeschen, C.; Byrne, J. M.; Borch, T.; Kappler, A.; et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat Commun 2020, 11 (1), 6329. https://doi.org/10.1038/s41467-020-20102-6Patzner, M. S.; Logan, M.; McKenna, A. M.; Young, R. B.; Zhou, Z.; Joss, H.; Mueller, C. W.; Hoeschen, C.; Scholten, T.; Straub, D. et al. Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment 2022, 3 (1), 76. https://doi.org/10.1038/s43247-022-00407-8
Association in the course directory
MES-5
Last modified: Tu 05.03.2024 10:07
Our focus will be on the biogeochemistry of soil organic matter in climate-affected ecosystems.Learning Objectives
• Students will learn fundamental principles of soil organic matter biogeochemistry such as sorption/desorption, oxidation-reduction, thermodynamics, and biodegradation.
• Students will learn effects of forest fires and permafrost thaw on soil organic matter cycling and water quality.
• Students will learn to advanced characterization techniques for soil organic matter.