Universität Wien

280317 VO PM-Math-4 VO (2020S)

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 40 participants
Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Due to the current situation and the change to "home-learning", all lectures will be held online.

  • Tuesday 03.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 10.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 17.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 24.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 31.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 21.04. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 28.04. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 05.05. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 12.05. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 19.05. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 26.05. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 09.06. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 16.06. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 23.06. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
  • Tuesday 30.06. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II

Information

Aims, contents and method of the course

Complex numbers, complex analysis, ordinary differential equations, integral transforms, systems of differential equations, modeling physical systems with ODEs, vector and tensor analysis, partial differential equations

Assessment and permitted materials

At the end of the semester (End of June) there is a written examination on the contents of the course.

Minimum requirements and assessment criteria

Acquisition and consolidation of the mathematical foundations discussed in the course.

Examination topics

Topics covered in the course. An overview will be presented in the first lecture.

Reading list

Lecture notes (via Moodle).

Mathematical Methods for Physics and Engineering: A Comprehensive Guide. K. F. Riley, M. P. Hobson, S. J. Bence. Cambridge University Press

Elementary Differential Equations and Boundary Value Problems. William E. Boyce, Richard C. DiPrima. John Wiley and Sons, Inc.

Association in the course directory

Last modified: Sa 02.04.2022 00:25