280317 VO PM-Math-4 VO (2020S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
max. 40 participants
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Due to the current situation and the change to "home-learning", all lectures will be held online.
- Tuesday 03.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 10.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 17.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 24.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 31.03. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 21.04. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 28.04. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 05.05. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 12.05. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 19.05. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 26.05. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 09.06. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 16.06. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 23.06. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
- Tuesday 30.06. 16:30 - 18:45 Eberhard Clar Saal Geologie 2B204 2.OG UZA II
Information
Aims, contents and method of the course
Complex numbers, complex analysis, ordinary differential equations, integral transforms, systems of differential equations, modeling physical systems with ODEs, vector and tensor analysis, partial differential equations
Assessment and permitted materials
At the end of the semester (End of June) there is a written examination on the contents of the course.
Minimum requirements and assessment criteria
Acquisition and consolidation of the mathematical foundations discussed in the course.
Examination topics
Topics covered in the course. An overview will be presented in the first lecture.
Reading list
Lecture notes (via Moodle).Mathematical Methods for Physics and Engineering: A Comprehensive Guide. K. F. Riley, M. P. Hobson, S. J. Bence. Cambridge University PressElementary Differential Equations and Boundary Value Problems. William E. Boyce, Richard C. DiPrima. John Wiley and Sons, Inc.
Association in the course directory
Last modified: Sa 02.04.2022 00:25