280482 VU WM-c-Dat Data Science in Astrophysics (PI) (2022S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Tu 08.02.2022 08:00 to We 23.02.2022 12:00
- Registration is open from Mo 28.02.2022 08:00 to Tu 15.03.2022 12:00
- Deregistration possible until Th 31.03.2022 23:59
Details
max. 30 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
Weitere Termine im Computerraum Univ. Sternwarte Do 13:15-16.30
2 Gruppen zu je 15 Personen
- Thursday 03.03. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 10.03. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 17.03. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 24.03. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 31.03. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 07.04. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 28.04. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 05.05. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 12.05. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 19.05. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 02.06. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 09.06. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 23.06. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
- Thursday 30.06. 13:15 - 16:30 Seminarraum 1 Astronomie Sternwarte, Türkenschanzstraße 17
Information
Aims, contents and method of the course
Assessment and permitted materials
There will be a series of assignments.
Minimum requirements and assessment criteria
Presence (min. 75% for positive mark)
Working program (i.e. runs and produces correct result) (50% required for passing)
Protocols/Homework (50% required for passing)
Working program (i.e. runs and produces correct result) (50% required for passing)
Protocols/Homework (50% required for passing)
Examination topics
Reading list
Lecture notes will be distributed during the course through Moodle.
Association in the course directory
Last modified: Th 03.03.2022 16:29
The tentative lecture plan is as follows:
1. Introduction
2. Basic Statistics and Spatial Statistics
3. Data Representation and Sparsity
4. Density Estimation
5. Regression and Inference 1
6. Regression and Inference 2
7. Gaussian Processes
8. Classical Machine Learning
9. Supervised Machine Learning & Neural Nets 1
10. Supervised Machine Learning & Neural Nets 2
11. Generative Models
12. Data Visualisation
13. Learning Dynamics
14. Focus Project