Universität Wien

300067 VO Introductory morphometrics (Biometry II) (2010S)

Principles of multivariate statistics

3.00 ECTS (2.00 SWS), SPL 30 - Biologie

Vorlesung jeweils Do., 10 Uhr c.t. - 12 Uhr, ÜR2, Ebene 2, UZA 1, Althanstrasse 14.
Bitte bringen Sie, wenn es Ihnen möglich ist, einen Laptop (netbook) zu den Demonstrationen mit - der Zeitpunkt, wann Demonstrationen zur Vorlesung stattfinden sollen, wird zumindest 1 Woche vorher bekannt gegeben werden.
Bitte besorgen Sie sich aus dem Internet das kostenfreie Programm 'gnumeric'. Es ist für diverse Betriebsysteme (Unix, Linux, OSX, Windows XP, Windows Vista - Windows 7 ?) erhältlich. Ideal wäre Gnumeric-Version >= 1.10.

Details

Language: German

Examination dates

Lecturers

Classes

Currently no class schedule is known.

Information

Aims, contents and method of the course

The course (lecture plus demonstration) should represent an introduction to the theoretical principles of morphometrics as well as to methodological, particularly multivariate statistical, handlings of morphometric data, it is mainly intended for advanced students with previous knowledge in biometry and basic statistics. The following topics will be explained in detail: a short history of morphometrics, morphometric characters, landmark points, size vs. shape, 'Gestalt', statistics as a focal auxiliary science of morphometrics, refreshing of basic statistical principles and vector analysis, stereological basics (areas - point counting method, lengths - Buffon's needl and coin problems, fractals and measures), basics of error statistics (repeated measures, propagation of error), binomial, multinomial and normal distribution, central limit theorem, distributional parameters (averages, variational parameters), data transformations (e.g., logarithmic, square root, ranging, z-standardizing), variance, covariance and correlation (e.g., product-moment c., rank c.), chi-square tests, multivariate representation of variance-covariance and correlation (matrices, vectors), simple and multiple linear regression analysis, partial regression and correlation, linear compounds, character space - Euclidean vs. MAHALANOBIS distances, principal components analysis (e.g., eigenvector, eigenvalue, total variance), factor analyses, factor space, ordination techniques - multivariate allometry and isometry, linear discriminant analyses, discriminant space, identification analysis.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

MZO W-4, MEV W-3

Last modified: Mo 07.09.2020 15:43