Universität Wien FIND

300376 UE Laboratory course: Mathematics (2017S)

2.00 ECTS (2.00 SWS), SPL 30 - Biologie
Continuous assessment of course work

Summary

1 Steppacher, Moodle
2 Heid, Moodle
3 Krall, Moodle

Registration/Deregistration

Groups

Group 1

max. 27 participants
Language: German
LMS: Moodle

Lecturers

Classes

Ort: SR 8/OMP,Oskar-Morgenstern-Platz 1, 1090 Wien.
jeweils Montag 9.45 - 11:15 Uhr

Aims, contents and method of the course

Basic mathematical notions (sets, numbers, functions);
Linear functions (matrices, vectors, linear equations, determinants);
Nonlinear functions in one variable (continuity, limits, differentiation, curve sketching, Taylor series,
integration:partial integration, substitution, definite and indefinite integrals, improper integrals, fundamental theorem of calculus);
Nonlinear functions in several variables (partial differentiation, extrema in 2 dimensions);
Differential equations (seperable, linear first order differential equations, linear second order differential equations with constant coefficients);
Linear least squares

Assessment and permitted materials

Written exam

Minimum requirements and assessment criteria

Prerequisites: none
Procedure: weekly classes
Grading: compulsory attendance, class participation,
Mid-term and final exam
Goals: Acquiring of basic practical mathematical skills

Examination topics

die im Vorfeld erarbeiteten Aufgaben werden an der Tafel präsentiert, Kreuzelübung

Group 2

max. 27 participants
Language: German
LMS: Moodle

Lecturers

Classes

Ort: SR 8/OMP, Oskar-Morgenstern-Platz 1, 1090 Wien.
jeweils Montag 11.30 - 13.00 Uhr

Aims, contents and method of the course

- Basic mathematical notions (sets, numbers, functions),
- Linear functions (matrices, vectors, linear equations, determinants),
- Nonlinear functions in one variable (continuity, limits, differentiation, curve sketching,
Taylor series, integration: partial integration, substitution, definite and indefinite integrals,
improper integrals, fundamental theorem of calculus),
- Nonlinear functions in several variables (partial differentiation, extrema in 2 dimensions),
- Differential equations (seperable, linear first order differential equations, linear second order
differential equations with constant coefficients),
- Linear least squares

Assessment and permitted materials

Compulsory attendance, class participation, mid-term and final exam

Minimum requirements and assessment criteria

Acquiring of basic practical mathematical skills

Examination topics

Weekly exercises

Group 3

max. 27 participants
Language: German
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

SR 13/OMP, jeweils Mo. 11.30 - 13.00 Uhr

Monday 06.03. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 20.03. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 27.03. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 03.04. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 24.04. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 24.04. 18:30 - 20:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 08.05. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 15.05. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 22.05. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 29.05. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 12.06. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 19.06. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 19.06. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Monday 26.06. 11:30 - 13:00 Seminarraum 13 Oskar-Morgenstern-Platz 1 2.Stock
Monday 26.06. 18:30 - 20:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Aims, contents and method of the course

Basic mathematical notions (sets, numbers, functions);

Linear functions (matrices, vectors, linear equations, determinants);

Nonlinear functions in one variable (continuity, limits, differentiation, curve sketching, Taylor series,

integration:partial integration, substitution, definite and indefinite integrals, improper integrals, fundamental theorem of calculus);

Nonlinear functions in several variables (partial differentiation, extrema in 2 dimensions);

Differential equations (seperable, linear first order differential equations, linear second order differential equations with constant coefficients);

Linear least squares

Assessment and permitted materials

Written exam

Minimum requirements and assessment criteria

Prerequisites: none

Procedure: weekly classes

Grading: compulsory attendance, class participation,

Mid-term and final exam

Goals: Acquiring of basic practical mathematical skills

Examination topics

die im Vorfeld erarbeiteten Aufgaben werden an der Tafel präsentiert, Kreuzelübung

Information

Reading list

Skriptum

Association in the course directory

BMG 7, BMB 7, B-BMG 7, B-BMB 7

Last modified: Fr 31.08.2018 08:56