300407 UE AI and Interdisciplinary Research (2025S)
Basics, Potential and Limitations
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Th 06.02.2025 14:00 to Th 20.02.2025 18:00
- Deregistration possible until Sa 15.03.2025 18:00
Details
max. 20 participants
Language: German, English
Lecturers
Classes (iCal) - next class is marked with N
The mandatory preliminary meeting will take place during the first session!
- Friday 07.03. 16:45 - 18:15 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 21.03. 16:45 - 18:15 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 28.03. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 02.05. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 16.05. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 30.05. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 06.06. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 13.06. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 20.06. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- N Friday 27.06. 16:45 - 18:15 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
Information
Aims, contents and method of the course
Assessment and permitted materials
The following course requirements must be fulfilled:
- Participation in the Journal Club
- Presentation on a selected topic
- Writing a manuscript on a selected topic
- Active participation
Minimum requirements and assessment criteria
The assessment criteria and minimum requirements are as follows:
Students may miss up to three two-hour sessions. Absences must be reported to the course instructor in advance with a valid, verifiable reason (e.g., a doctor’s note).
- Participation in the Journal Club: 15%
- Presentation on a selected topic: 15%
- Writing a manuscript on a selected topic as the final assignment: 60%
- Active participation through engagement in the course and active contribution to discussions: 10%
Students may miss up to three two-hour sessions. Absences must be reported to the course instructor in advance with a valid, verifiable reason (e.g., a doctor’s note).
Examination topics
The following course requirements must be fulfilled:
- Participation in the Journal Club
- Presentation on a selected topic
- Writing a manuscript on a selected topic
- Active participation
Reading list
Below you will find initial literature references for the course:
- Bozkurt, A. (2024). Why Generative AI Literacy, Why Now and Why it Matters in the Educational Landscape? Kings, Queens and GenAI Dragons. Open Praxis, 16(3). https://doi.org/10.55982/openpraxis.16.3.739
- Caluori, L. (2024). Hey Alexa, Why Are You Called Intelligent? An Empirical Investigation on Definitions of AI. AI & SOCIETY, 39(4), 1905–1919. https://doi.org/10.1007/s00146-023-01643-y
- Editorial. (1987). AI & SOCIETY, 1(1), 3–4. https://doi.org/10.1007/BF01905884
- Gattiglia, G. (2025). Managing Artificial Intelligence in Archeology. An overview. Journal of Cultural Heritage, 71, 225–233. https://doi.org/10.1016/j.culher.2024.11.020
- Henz, P. (2021). Ethical and legal responsibility for Artificial Intelligence. Discover Artificial Intelligence, 1(1), 2.https://doi.org/10.1007/s44163-021-00002-4
- Huerta, E. A., et al. (2023). FAIR for AI: An interdisciplinary and international community building perspective. Scientific Data, 10(1), 487. https://doi.org/10.1038/s41597-023-02298-6
- Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022). Quo vadis artificial intelligence? Discover Artificial Intelligence, 2(1), 4. https://doi.org/10.1007/s44163-022-00022-8
- Kaynak, O. (2021). The golden age of Artificial Intelligence. Discover Artificial Intelligence, 1(1), 1. https://doi.org/10.1007/s44163-021-00009-x
- Kusters, R., et al. (2020). Interdisciplinary Research in Artificial Intelligence: Challenges and Opportunities. Frontiers in Big Data, 3. https://doi.org/10.3389/fdata.2020.577974
- Lu, C. (2024). Rethinking artificial intelligence from the perspective of interdisciplinary knowledge production. AI & SOCIETY, 39(6), 3059–3060. https://doi.org/10.1007/s00146-023-01839-2
- Nims, R., & Butler, V. L. (2019). Increasing the Robustness of Meta-analysis Through Life History and Middle-Range Models: An Example from the Northeast Pacific. Journal of Archaeological Method and Theory, 26(2), 581–618. https://doi.org/10.1007/s10816-018-9383-1
- Pinski, M., & Benlian, A. (2024). AI literacy for users – A comprehensive review and future research directions of learning methods, components, and effects. Computers in Human Behavior: Artificial Humans, 2(1), 100062. https://doi.org/10.1016/j.chbah.2024.100062
- Schmallenbach, L., Bärnighausen, T. W., & Lerchenmueller, M. J. (2024). The global geography of artificial intelligence in life science research. Nature Communications, 15(1), 7527. https://doi.org/10.1038/s41467-024-51714-x
- Sheikh, H., Prins, C., & Schrijvers, E. (2023). Mission AI: The New System Technology. Springer International Publishing. https://doi.org/10.1007/978-3-031-21448-6
- Wang, P. (2019). On Defining Artificial Intelligence. Journal of Artificial General Intelligence, 10, 1–37. https://doi.org/10.2478/jagi-2019-0002
- Zheng, M., Andrade, C. H., & Bajorath, J. (2021). Introducing artificial intelligence in the life sciences. Artificial Intelligence in the Life Sciences, 1, 100001. https://doi.org/10.1016/j.ailsci.2021.100001
Association in the course directory
MAN 3, MAN W5, MEC-9, MBO 7, MNB6, MZO4, MES5, CoBeNe 4
Last modified: Fr 11.04.2025 09:48
Methods