Warning! The directory is not yet complete and will be amended until the beginning of the term.
300407 UE AI and Interdisciplinary Research (2025S)
Basics, Potential and Limitations
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Th 06.02.2025 14:00 to Th 20.02.2025 18:00
- Deregistration possible until Sa 15.03.2025 18:00
Details
max. 20 participants
Language: German, English
Lecturers
Classes (iCal) - next class is marked with N
The mandatory preliminary meeting will take place during the first session!
- Friday 07.03. 16:45 - 18:15 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 21.03. 16:45 - 18:15 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 28.03. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 02.05. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 16.05. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 30.05. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 06.06. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 13.06. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 20.06. 16:45 - 19:00 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
- Friday 27.06. 16:45 - 18:15 Seminarraum 1.4, Biologie Djerassiplatz 1, 1.013, Ebene 1
Information
Aims, contents and method of the course
Assessment and permitted materials
The following course requirements must be fulfilled:
- Participation in the Journal Club
- Presentation on a selected topic
- Writing a manuscript on a selected topic
- Active participation
Minimum requirements and assessment criteria
The assessment criteria and minimum requirements are as follows:
Students may miss up to three two-hour sessions. Absences must be reported to the course instructor in advance with a valid, verifiable reason (e.g., a doctor’s note).
- Participation in the Journal Club: 15%
- Presentation on a selected topic: 15%
- Writing a manuscript on a selected topic as the final assignment: 60%
- Active participation through engagement in the course and active contribution to discussions: 10%
Students may miss up to three two-hour sessions. Absences must be reported to the course instructor in advance with a valid, verifiable reason (e.g., a doctor’s note).
Examination topics
The following course requirements must be fulfilled:
- Participation in the Journal Club
- Presentation on a selected topic
- Writing a manuscript on a selected topic
- Active participation
Reading list
Below you will find initial literature references for the course:
- Bozkurt, A. (2024). Why Generative AI Literacy, Why Now and Why it Matters in the Educational Landscape? Kings, Queens and GenAI Dragons. Open Praxis, 16(3). https://doi.org/10.55982/openpraxis.16.3.739
- Caluori, L. (2024). Hey Alexa, Why Are You Called Intelligent? An Empirical Investigation on Definitions of AI. AI & SOCIETY, 39(4), 1905–1919. https://doi.org/10.1007/s00146-023-01643-y
- Editorial. (1987). AI & SOCIETY, 1(1), 3–4. https://doi.org/10.1007/BF01905884
- Gattiglia, G. (2025). Managing Artificial Intelligence in Archeology. An overview. Journal of Cultural Heritage, 71, 225–233. https://doi.org/10.1016/j.culher.2024.11.020
- Henz, P. (2021). Ethical and legal responsibility for Artificial Intelligence. Discover Artificial Intelligence, 1(1), 2.https://doi.org/10.1007/s44163-021-00002-4
- Huerta, E. A., et al. (2023). FAIR for AI: An interdisciplinary and international community building perspective. Scientific Data, 10(1), 487. https://doi.org/10.1038/s41597-023-02298-6
- Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022). Quo vadis artificial intelligence? Discover Artificial Intelligence, 2(1), 4. https://doi.org/10.1007/s44163-022-00022-8
- Kaynak, O. (2021). The golden age of Artificial Intelligence. Discover Artificial Intelligence, 1(1), 1. https://doi.org/10.1007/s44163-021-00009-x
- Kusters, R., et al. (2020). Interdisciplinary Research in Artificial Intelligence: Challenges and Opportunities. Frontiers in Big Data, 3. https://doi.org/10.3389/fdata.2020.577974
- Lu, C. (2024). Rethinking artificial intelligence from the perspective of interdisciplinary knowledge production. AI & SOCIETY, 39(6), 3059–3060. https://doi.org/10.1007/s00146-023-01839-2
- Nims, R., & Butler, V. L. (2019). Increasing the Robustness of Meta-analysis Through Life History and Middle-Range Models: An Example from the Northeast Pacific. Journal of Archaeological Method and Theory, 26(2), 581–618. https://doi.org/10.1007/s10816-018-9383-1
- Pinski, M., & Benlian, A. (2024). AI literacy for users – A comprehensive review and future research directions of learning methods, components, and effects. Computers in Human Behavior: Artificial Humans, 2(1), 100062. https://doi.org/10.1016/j.chbah.2024.100062
- Schmallenbach, L., Bärnighausen, T. W., & Lerchenmueller, M. J. (2024). The global geography of artificial intelligence in life science research. Nature Communications, 15(1), 7527. https://doi.org/10.1038/s41467-024-51714-x
- Sheikh, H., Prins, C., & Schrijvers, E. (2023). Mission AI: The New System Technology. Springer International Publishing. https://doi.org/10.1007/978-3-031-21448-6
- Wang, P. (2019). On Defining Artificial Intelligence. Journal of Artificial General Intelligence, 10, 1–37. https://doi.org/10.2478/jagi-2019-0002
- Zheng, M., Andrade, C. H., & Bajorath, J. (2021). Introducing artificial intelligence in the life sciences. Artificial Intelligence in the Life Sciences, 1, 100001. https://doi.org/10.1016/j.ailsci.2021.100001
Association in the course directory
MAN 3, MAN W5, MEC-9, MBO 7, MNB6, MZO4, MES5, CoBeNe 4
Last modified: Fr 11.04.2025 09:48
Methods