Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching and access tests from 21 April 2021 onwards can be found at https://studieren.univie.ac.at/en/info.

301234 VO Advanced Biochemical and Biophysical Methods (2020S)

3.00 ECTS (2.00 SWS), SPL 30 - Biologie



Language: English

Examination dates



Course dates: 20.04. - 22.05.2020; 09:00 10:30; 10:45 12:15
Course venue: VBC5 lecture hall A (Rm. 1.216)

Comments to time and place: the lectures will take place ONLY at the indicated times and dates. There will be NO possibility to accommodate the lectures on different dates or at a different time.

Student orientation/Vorbesprechung: tba

Exams: #1: 27.05.2020, 09:00-11:00 (VBC5 seminar room #1.116)
Tentative schedule:
Introductory module
20.04.2020 09:00-10:30 Leonard Introductory lecture
20.04.2020 10:45-12:15 Zagrovic Math primer
Protein expression and purification
22.04.2020 09:00-10:30 Leonard From protein properties to purification
22.04.2020 10:30-12:00 Slade Protein expression and purification
24.04.2020 09:00-10:30 Falk Integral membrane proteins and protein complexes
24.04.2020 10:45-12:15 Sedivy Protein quality assessment and control
Spectral methods (and more)
27.04.2020 09:00-10:30 Dong Introduction to X-ray crystallography, SLS and SAXS (part 1)
27.04.2020 10:45-12:15 Dong Introduction to X-ray crystallography, SLS and SAXS (part 2)
29.04.2020 09:00-10:30 Sedivy Absorption spectroscopy
29.04.2020 10:30-12:00 Puchinger Fluorescence spectroscopy
04.05.2020 09:00-10:30 Sedivy Applications of absorption and fluorescence spectroscopy
04.05.2020 10:45-12:15 Hartl Introduction to mass spectroscopy
08.05.2020 09:00-10:30 Kontaxis NMR spectroscopy
08.05.2020 10:45-12:15 Sedivy Microcalorimetry
Imaging methods
11.05.2020 09:00-10:30 Heuser Introduction to electron microscopy
11.05.2020 10:45-12:15 Yudushkin Introduction to fluorescence microscopy
13.05.2020 09:00-10:30 Yudushkin Imaging methods for detection of molecular proximity
Concluding module
13.05.2020 10:30-12:00 Leonard Multi-method approach to tackle complex problems/Real-world examples
15.05.2020 09:00-10:30 VBCF tour 1 (upon demand)
15.05.2020 10:45-12:15 VBCF tour 2 (upon demand)


Aims, contents and method of the course

Provide a comprehensive overview of strategies and methods for protein expression and purification; enable students to choose a better strategy for a given protein.
Highlight the utility of different methods of protein characterization for understanding its structure and function using specific examples.
Explain theoretical background and instrumentation used for protein characterization in amount sufficient for critical interpretation of original research results. Enable students to choose an adequate method for a specific question.
This theoretical course will start with introductory lectures on the basic concepts in structural biology and cover modern approaches and fundamentals of the methods used in recombinant protein expression, purification, biophysical characterization and quality assessment of macromolecular samples as well as cell biophysics approaches. The covered topics include static and dynamic light scattering, fundamentals of X-ray crystallography, absorption and fluorescence spectroscopy techniques (CD, FRET, FLIM, FC(C)S, fluorescence anisotropy, etc), mass spectroscopy and imaging methods (light and electron microscopy).
Lecture series (Ringvorlesung)

Assessment and permitted materials

Written exam at the end of the lecture series. In the exam, you can achieve up to 100 percentage points.

Minimum requirements and assessment criteria

To attain the pass grade, more than 44.99% points are necessary
Grading scheme:
1 (excellent): 85-100%
2 (good): 75-84.99%
3 (satisfactory): 65-74.99%
4 (sufficient): 45-64.99%
5 (insufficient): 0-44.99%

Examination topics

Protein and amino acid properties (pKa, pI, etc)
Methods of protein expression and purification (size exclusion chromatography, affinity chromatography, hydrophobic interaction- or ion exchange chromatography, purification tags, etc)
Methods of protein quality assessment and control
Basic principles of X-ray crystallography
Basic principles of SAXS, SLS and DLS
Basic principles of absorption and emission (fluorescence) spectroscopy (quantum yield, excitation/emission spectra, Stokes shift, Lambert-Baer's law, CD spectroscopy, etc)
Fluorescence correlation spectroscopy
Basic principles of NMR spectroscopy
Basic principles of mass spectrometry
Basic principles of digital light microscopy (contrast, resolution, magnification, electronic detection of light, binning, factors determining FRET efficiency, etc)
Basic principles of electron microscopy

Reading list

Recommended literature:

Peter J. Walla: Modern Biophysical Chemistry ISBN 978-3527337736

Association in the course directory


Last modified: Mo 05.10.2020 10:11