Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform. NOTE: Courses where at least one unit is on-site are currently marked "on-site" in u:find.

Further information about on-site teaching and access tests can be found at https://studieren.univie.ac.at/en/info.

Warning! The directory is not yet complete and will be amended until the beginning of the term.

301629 UE Laboratory course: Mathematics (2017W)

2.00 ECTS (2.00 SWS), SPL 30 - Biologie
Continuous assessment of course work

Summary

2 Zeindlhofer , Moodle
3 Zeindlhofer , Moodle
4 Honegger , Moodle

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first serve).
Registration information is available for each group.

Groups

Group 1

max. 45 participants
Language: German
LMS: Moodle

Lecturers

Classes

Kurs 1 mit Esther Heid findet Fr 13:00 statt

Erste Einheit: 5./6.10.

Gruppe 1 (Esther Heid): Freitags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23
Gruppe 2 (Veronika Zeindlhofer): Donnerstags 13:00-14:30 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 3 (Veronika Zeindlhofer und Philipp Honegger): Donnerstags 14:30-16:00 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 4 (Philipp Honegger): Donnerstags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23

Aims, contents and method of the course

Basic arithmetics of complex numbers as well as polar and cartesian coordinates and Euler's theorem, Definition of a function, continuity,
limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)

Assessment and permitted materials

Compulsory attendance; the evaluation consists of different performances: active participation and homework, mid term and final exam (the percentage of the subgrades will be announced by the course leader).

Minimum requirements and assessment criteria

Prerequisites: none
Procedure: weekly classes
Grading: compulsory attendance, class participation,
Mid-term and final exam
Goals: Acquiring of basic practical mathematical skills

Group 2

max. 45 participants
Language: German
LMS: Moodle

Lecturers

Classes

Kurs 2 mit Veronika Zeindlhofer findet Do 13:00 statt!

Erste Einheit: 5./6.10.

Gruppe 1 (Esther Heid): Freitags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23
Gruppe 2 (Veronika Zeindlhofer): Donnerstags 13:00-14:30 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 3 (Veronika Zeindlhofer und Philipp Honegger): Donnerstags 14:30-16:00 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 4 (Philipp Honegger): Donnerstags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23

Aims, contents and method of the course

Basic arithmetics of complex numbers as well as polar and cartesian coordinates and Euler's theorem, Definition of a function, continuity,
limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)

Assessment and permitted materials

Compulsory attendance; the evaluation consists of different performances: active participation and results obtained, written report, theoretical knowledge including final exam (the percentage of the subgrades will be announced by the course leader); each of the subgrades must have a positive evaluation.

Minimum requirements and assessment criteria

Prerequisites: none
Procedure: weekly classes
Grading: compulsory attendance, class participation,
Mid-term and final exam
Goals: Acquiring of basic practical mathematical skills

Group 3

max. 45 participants
Language: German
LMS: Moodle

Lecturers

Classes

Kurs 3 mit Veronika Zeindlhofer und Philipp Honegger findet Do 14:30 statt

Erste Einheit: 5./6.10.

Gruppe 1 (Esther Heid): Freitags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23
Gruppe 2 (Veronika Zeindlhofer): Donnerstags 13:00-14:30 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 3 (Veronika Zeindlhofer und Philipp Honegger): Donnerstags 14:30-16:00 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 4 (Philipp Honegger): Donnerstags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23

Aims, contents and method of the course

Basic arithmetics of complex numbers as well as polar and cartesian coordinates and Euler's theorem, Definition of a function, continuity,
limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)

Assessment and permitted materials

Compulsory attendance; the evaluation consists of different performances: active participation and results obtained, written report, theoretical knowledge including final exam (the percentage of the subgrades will be announced by the course leader); each of the subgrades must have a positive evaluation.

Minimum requirements and assessment criteria

Prerequisites: none
Procedure: weekly classes
Grading: mid-term and final exam; participation is compulsory
Goals: Acquisition of basic practical mathematical skills

Group 4

max. 45 participants
Language: German
LMS: Moodle

Lecturers

Classes (iCal) - next class is marked with N

Kurs 4 mit Philipp Honegger findet Do 13:00 statt!

Erste Einheit: 5./6.10.

Gruppe 1 (Esther Heid): Freitags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23
Gruppe 2 (Veronika Zeindlhofer): Donnerstags 13:00-14:30 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 3 (Veronika Zeindlhofer und Philipp Honegger): Donnerstags 14:30-16:00 Hörsaal 3 Chemie Währingerstraße 38 1H04
Gruppe 4 (Philipp Honegger): Donnerstags 13:00-14:30 Hörsaal 4 Chemie Währingerstraße 42 2H23

Thursday 05.10. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 12.10. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 19.10. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 09.11. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 16.11. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 23.11. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 30.11. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 07.12. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 14.12. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 11.01. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 18.01. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42
Thursday 25.01. 13:00 - 14:30 Hörsaal 4 Chemie HP Währinger Straße 42

Aims, contents and method of the course

Basic arithmetics of complex numbers as well as polar and cartesian coordinates and Euler's theorem, Definition of a function, continuity,

limits, differentiation, extreme value problems, Basic integration techniques (integration by parts and substitution), antiderivatives and definite integrals, Some selected topics in analysis, Taylor and MacLaurin series, partial differentiation, Calcation of extreme values for functions of two variables, first order differential equations (separable, linear inhomogeneous), second order differential equations (linear, constant coefficients), Basic linear algebra (matrices and vectors)

Assessment and permitted materials

Compulsory attendance; the evaluation consists of different performances: active participation and homework, mid term and final exam (the percentage of the subgrades will be announced by the course leader).

Minimum requirements and assessment criteria

Prerequisites: none

Procedure: weekly classes

Grading: compulsory attendance, class participation,

Mid-term and final exam

Goals: Acquiring of basic practical mathematical skills

Information

Examination topics

Reading list


Association in the course directory

BMB 7, BMG 7, B-BMB 7, B-BMG 7

Last modified: Mo 07.09.2020 15:44