340236 UE Machine translation (2022S)
Continuous assessment of course work
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 07.02.2022 09:00 to Fr 18.02.2022 17:00
- Registration is open from Mo 07.03.2022 09:00 to Fr 11.03.2022 17:00
- Deregistration possible until Th 31.03.2022 23:59
Details
max. 25 participants
Language: German, English
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 09.03. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 16.03. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 23.03. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 30.03. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 06.04. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 04.05. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 11.05. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 18.05. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 25.05. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 01.06. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 08.06. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 15.06. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 22.06. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
- Wednesday 29.06. 13:15 - 14:45 Medienlabor II ZfT Gymnasiumstraße 50 4.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
Continuous evaluation:
- attendance, seminar presentation and weekly reflections count for 20% of the mark.
- student portfolio counts for 40% of the mark.
- final reflective essay counts for 40% of the mark.
- attendance, seminar presentation and weekly reflections count for 20% of the mark.
- student portfolio counts for 40% of the mark.
- final reflective essay counts for 40% of the mark.
Minimum requirements and assessment criteria
MT UE marking mapexcellent - sehr gut (1)
good - gut (2)
average - befriedigend (3)
sufficient - genügend (4)
insufficient - nicht genügend (5)
good - gut (2)
average - befriedigend (3)
sufficient - genügend (4)
insufficient - nicht genügend (5)
Examination topics
Continuous evaluation
Reading list
- Carstensen, K-U. 2017. Sprachtechnologie - Ein Überblick. http://kai-uwe-carstensen.de/
Publikationen/Sprachtechnologie.pdf
- Chan, Sin-Wai. Ed. 2015. Routledge encyclopedia of translation technology Abingdon, Oxon : Routledge.
- Depraetere, I. Ed. 2011. Perspectives on translation quality. Berlin: de Gruyter Mouton
- Hausser, Roland. 2000. Grundlagen der Computerlinguistik - Mensch-Maschine-Kommunikation in natürlicher Sprache (mit 772 – Übungen). Springer.
- Kockaert, H. J. and Steurs, F. Eds. 2015. Handbook of terminology. Amsterdam; Philadelphia: John Benjamins Publishing Company.
- Koehn, P. 2020. Neural Machine Translation. Cambridge University Press
- Munday, J. 2012. Evaluation in translation: critical points of translator decision-making: Routledge.
- O'Hagan, M. Ed. 2019. The Routledge Handbook of Translation and Technology. Abingdon: Routledge
- Waibel, A. 2015. Sprachbarrieren durchbrechen: Traum oder Wirklichkeit? Nova Acta Leopoldina NF 122, Nr. 410, 101–123. https://isl.anthropomatik.kit.edu/downloads/
NAL_Bd122_Nr410_101-124_Waibel_low_res.pdf
- Wright, S. E. and Budin, G. 1997/2001. The Handbook of Terminology Management. Two volumes. Amsterdam/Philadelphia: John Benjamins Publishing Company.
- BS EN ISO 17100:2015: Translation Services. Requirements for translation services
- ISO/DIS 18587 Translation services - Post-editing of machine translation output – Requirements
- ASTM F2575 Standard Guide for Quality Assurance in Translation
Publikationen/Sprachtechnologie.pdf
- Chan, Sin-Wai. Ed. 2015. Routledge encyclopedia of translation technology Abingdon, Oxon : Routledge.
- Depraetere, I. Ed. 2011. Perspectives on translation quality. Berlin: de Gruyter Mouton
- Hausser, Roland. 2000. Grundlagen der Computerlinguistik - Mensch-Maschine-Kommunikation in natürlicher Sprache (mit 772 – Übungen). Springer.
- Kockaert, H. J. and Steurs, F. Eds. 2015. Handbook of terminology. Amsterdam; Philadelphia: John Benjamins Publishing Company.
- Koehn, P. 2020. Neural Machine Translation. Cambridge University Press
- Munday, J. 2012. Evaluation in translation: critical points of translator decision-making: Routledge.
- O'Hagan, M. Ed. 2019. The Routledge Handbook of Translation and Technology. Abingdon: Routledge
- Waibel, A. 2015. Sprachbarrieren durchbrechen: Traum oder Wirklichkeit? Nova Acta Leopoldina NF 122, Nr. 410, 101–123. https://isl.anthropomatik.kit.edu/downloads/
NAL_Bd122_Nr410_101-124_Waibel_low_res.pdf
- Wright, S. E. and Budin, G. 1997/2001. The Handbook of Terminology Management. Two volumes. Amsterdam/Philadelphia: John Benjamins Publishing Company.
- BS EN ISO 17100:2015: Translation Services. Requirements for translation services
- ISO/DIS 18587 Translation services - Post-editing of machine translation output – Requirements
- ASTM F2575 Standard Guide for Quality Assurance in Translation
Association in the course directory
Last modified: Fr 26.07.2024 00:18
Students will apply elements of the three main machine translation (MT) paradigms to a range of tasks, ranging from automatic translation between closely-related languages, language variants or dialects to building a new machine translation engine from scratch.Using state-of-the-art technologies, students will learn to design a machine translation engine, gather training data, clean the data, train at least one engine, evaluate it, and improve it.In addition, students will also use controlled language and technical writing principles and techniques in order to author or edit content for the purpose of improving the quality of raw MT output. Post-editing MT (PEMT) standards and best practices will be applied to practical PEMT tasks, which will give students the opportunity to fine-tune their skills identifying and annotating subtle MT errors using popular industry annotation frameworks.Content:
• Rule-based (RBMT), statistical (SMT) and neural machine translation (NMT): current applications
• NMT architectures
• MT evaluation metrics
• MT quality estimation (QE) practices
• MT in professional workflows
• MT in more complex systems (e.g. speech-to-speech translation)
• Controlled language; pre-editing
• Post-editing machine translation (PEMT) standards and best practices
• Ethics of using MT and impact of MT on freelance linguistsDidactic approach:
Students will need to complete assignments involving a wide range of technologies involved in the process of building MT engines, estimating the quality of their output, and comparing the results of these automatic estimations to other MT evaluation techniques.Students will also gain experience of post-editing MT output.Prof. Ciobanu will teach two seminar groups in English and Miss Wiesinger will teach one seminar group in German. In the English seminar, whenever possible, you will have access to simultaneous (but automatic, machine-generated) translation into German which, although not perfect, should still give students broad access to the live discussions and so that they have the live experience of machine translation applied in the course itself.