340320 VO Machine translation (2024W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
max. 1000 participants
Language: English
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
Language: English
– This course will be taught in a hybrid format –
- Tuesday 15.10. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 22.10. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 29.10. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 05.11. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- N Tuesday 12.11. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 19.11. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 03.12. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 10.12. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 17.12. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 07.01. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 14.01. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
- Tuesday 21.01. 11:30 - 13:00 Hörsaal 6 Franz-Klein-Gasse 1 EG
Information
Aims, contents and method of the course
Assessment and permitted materials
Students will need to use all the knowledge and experience regarding a wide range of aspects connected with machine translation and other translation tools which they have acquired during the course to answer a series of questions about the topics covered during the course.The exam will be held as an in-person open-book multiple-choice exam without access to any electronic resources. This means that notes and print-outs can be used during the exam, but no electronic devices (which also excludes the use of artificial intelligence tools in the exam).
Minimum requirements and assessment criteria
MT VO marking mapAt least 90% of the points – excellent (sehr gut, 1)
At least 80% of the points – good (gut, 2)
At least 70% of the points – average (befriedigend, 3)
At least 60% of the points – sufficient (genügend, 4)
Less than 60% of the points – insufficient (nicht genügend, 5)To pass the exam, a minimum of 60% of the points is required.
At least 80% of the points – good (gut, 2)
At least 70% of the points – average (befriedigend, 3)
At least 60% of the points – sufficient (genügend, 4)
Less than 60% of the points – insufficient (nicht genügend, 5)To pass the exam, a minimum of 60% of the points is required.
Examination topics
The questionnaire used for the assessment will be based on the information shared in and discussions held in the live course sessions.
Reading list
Core texts:
- Kenny, Dorothy. 2022. Machine translation for everyone: Empowering users in the age of artificial intelligence. (Translation and Multilingual Natural Language Processing 18). Berlin: Language Science Press. DOI: 10.5281/zenodo.6653406 (url: https://langsci-press.org/catalog/book/342)
- Koehn, P. 2020. Neural Machine Translation. Cambridge University Press
- Moniz, H., & Parra Escartín, C. (Eds.). (2023). Towards Responsible Machine Translation: Ethical and Legal Considerations in Machine Translation (Vol. 4). Springer International Publishing. https://doi.org/10.1007/978-3-031-14689-3
- Rothwell, A., Moorkens, J., Fernández-Parra, M., Drugan, J. & F. Austermuehl. (2023). Translation Tools and Technologies (1st ed.). London: RoutledgeAdditional recommended resources:
- Globally Speaking: A podcast for and by localization professionals. https://www.globallyspeakingradio.com/
- Carstensen, K-U. 2017. Sprachtechnologie - Ein Überblick. http://kai-uwe-carstensen.de/
Publikationen/Sprachtechnologie.pdf
- Chan, Sin-Wai. Ed. 2015. Routledge encyclopedia of translation technology Abingdon, Oxon : Routledge.
- Depraetere, I. Ed. 2011. Perspectives on translation quality. Berlin: de Gruyter Mouton
- Hausser, Roland. 2000. Grundlagen der Computerlinguistik - Mensch-Maschine-Kommunikation in natürlicher Sprache (mit 772 – Übungen). Springer.
- Kockaert, H. J. and Steurs, F. Eds. 2015. Handbook of terminology. Amsterdam; Philadelphia: John Benjamins Publishing Company.
- Munday, J. 2012. Evaluation in translation: critical points of translator decision-making: Routledge.
- O'Hagan, M. Ed. 2019. The Routledge Handbook of Translation and Technology. Abingdon: Routledge
- Waibel, A. 2015. Sprachbarrieren durchbrechen: Traum oder Wirklichkeit? Nova Acta Leopoldina NF 122, Nr. 410, 101–123. https://isl.anthropomatik.kit.edu/downloads/
NAL_Bd122_Nr410_101-124_Waibel_low_res.pdf
- Wright, S. E. and Budin, G. 1997/2001. The Handbook of Terminology Management. Two volumes. Amsterdam/Philadelphia: John Benjamins Publishing Company.
- BS EN ISO 17100:2015: Translation Services. Requirements for translation services
- ISO/DIS 18587 Translation services - Post-editing of machine translation output – Requirements
- Kenny, Dorothy. 2022. Machine translation for everyone: Empowering users in the age of artificial intelligence. (Translation and Multilingual Natural Language Processing 18). Berlin: Language Science Press. DOI: 10.5281/zenodo.6653406 (url: https://langsci-press.org/catalog/book/342)
- Koehn, P. 2020. Neural Machine Translation. Cambridge University Press
- Moniz, H., & Parra Escartín, C. (Eds.). (2023). Towards Responsible Machine Translation: Ethical and Legal Considerations in Machine Translation (Vol. 4). Springer International Publishing. https://doi.org/10.1007/978-3-031-14689-3
- Rothwell, A., Moorkens, J., Fernández-Parra, M., Drugan, J. & F. Austermuehl. (2023). Translation Tools and Technologies (1st ed.). London: RoutledgeAdditional recommended resources:
- Globally Speaking: A podcast for and by localization professionals. https://www.globallyspeakingradio.com/
- Carstensen, K-U. 2017. Sprachtechnologie - Ein Überblick. http://kai-uwe-carstensen.de/
Publikationen/Sprachtechnologie.pdf
- Chan, Sin-Wai. Ed. 2015. Routledge encyclopedia of translation technology Abingdon, Oxon : Routledge.
- Depraetere, I. Ed. 2011. Perspectives on translation quality. Berlin: de Gruyter Mouton
- Hausser, Roland. 2000. Grundlagen der Computerlinguistik - Mensch-Maschine-Kommunikation in natürlicher Sprache (mit 772 – Übungen). Springer.
- Kockaert, H. J. and Steurs, F. Eds. 2015. Handbook of terminology. Amsterdam; Philadelphia: John Benjamins Publishing Company.
- Munday, J. 2012. Evaluation in translation: critical points of translator decision-making: Routledge.
- O'Hagan, M. Ed. 2019. The Routledge Handbook of Translation and Technology. Abingdon: Routledge
- Waibel, A. 2015. Sprachbarrieren durchbrechen: Traum oder Wirklichkeit? Nova Acta Leopoldina NF 122, Nr. 410, 101–123. https://isl.anthropomatik.kit.edu/downloads/
NAL_Bd122_Nr410_101-124_Waibel_low_res.pdf
- Wright, S. E. and Budin, G. 1997/2001. The Handbook of Terminology Management. Two volumes. Amsterdam/Philadelphia: John Benjamins Publishing Company.
- BS EN ISO 17100:2015: Translation Services. Requirements for translation services
- ISO/DIS 18587 Translation services - Post-editing of machine translation output – Requirements
Association in the course directory
Last modified: We 06.11.2024 09:26
• Rule-based (RBMT), statistical (SMT), and neural machine translation (NMT): history and applications
• NMT architectures
• MT evaluation metrics
• MT quality estimation (QE) practices
• MT in professional workflows
• MT in more complex systems (e.g. speech-to-speech translation)
• Controlled language; pre-editing
• Post-editing machine translation (PEMT) standards and best practices
• Ethics of using MT and impact of MT on freelance linguists, the language services industry, natural languages, and the environment
• General information on the translation industry and major technologies used by professionalsDidactic approach:
The content of this course is acquired by students in an interactive and blended way between home assignments studying the research literature, reflecting on concrete scenarios of applying machine translation systems, as well as the lecturers’ presentation and joint discussions in class. The course is held in English.