Universität Wien

350154 VU BD2II - Biomechanical Motion Analysis in Practice (2024W)

3.00 ECTS (2.00 SWS), SPL 35 - Sportwissenschaft
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 20 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 03.10. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 10.10. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 17.10. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 24.10. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 31.10. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 07.11. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 21.11. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 28.11. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 05.12. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 12.12. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 09.01. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 16.01. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 23.01. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock
  • Thursday 30.01. 12:30 - 14:00 ZSU - USZ II, Biomechanisches Labor, 2. Stock
    ZSU - USZ II, EDV Raum, 2. Stock

Information

Aims, contents and method of the course

Assessment and permitted materials

In the case of courses with continuous assessment in the winter semester, the entire performance by students must be completed by the following 30 April at the latest, and by 30 September at the latest in the case of courses with continuous assessment in the summer semester. Students who are not interested in the ggst. have deregistered from the course, are to be assessed. In the event of a negative assessment, a board examination is inadmissible, the attendance of the course must be repeated. Source of law: Statutes of the University of Vienna §10 (4, 5, 6).

You are expressly informed that if a fraudulent service is detected (e.g.: copying, plagiarism, use of unauthorized aids, forgery, ghostwriting, etc.), the entire PI-LV will be considered cheated and counts as an attempt. (Entry in U:SPACE: X = not judged)

Minimum requirements and assessment criteria

25% attendance + quiz (2.5% per class)

75% final abstract (60%) + presentation (15%)
- Groups of 2-3 for the experiments
- Topics to be chosen by the students
- 1 page abstract (1 per student)
- 3-5 min presentation (1 per student)

Examination topics

Students chose between:
- Ultrasonography
- Electromyography / muscle stimulation
- Motion analysis (kinematics and kinetics)
- Strength measurements
- Musculoskeletal modelling
- Machine learning

Reading list

Topic reads:
Vigotsky, A. D., Halperin, I., Lehman, G. J., Trajano, G. S., & Vieira, T. M. (2018). Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Frontiers in Physiology, 8(JAN). https://doi.org/10.3389/fphys.2017.00985

Franchi, M. V., Raiteri, B. J., Longo, S., Sinha, S., Narici, M. V., & Csapo, R. (2018). Muscle Architecture Assessment: Strengths, Shortcomings and New Frontiers of in Vivo Imaging Techniques. Ultrasound in Medicine and Biology. https://doi.org/10.1016/j.ultrasmedbio.2018.07.010

Lloyd, D. (2021). The future of in-field sports biomechanics: wearables plus modelling compute real-time in vivo tissue loading to prevent and repair musculoskeletal injuries. Sports Biomechanics, 1–29. https://doi.org/10.1080/14763141.2021.1959947

Saxby, D. J., Killen, B. A., Pizzolato, C., Carty, C. P., Diamond, L. E., Modenese, L., Fernandez, J., Davico, G., Barzan, M., Lenton, G., da Luz, S. B., Suwarganda, E., Devaprakash, D., Korhonen, R. K., Alderson, J. A., Besier, T. F., Barrett, R. S., & Lloyd, D. G. (2020). Machine learning methods to support personalized neuromusculoskeletal modelling. Biomechanics and Modeling in Mechanobiology, 19(4), 1169–1185. https://doi.org/10.1007/s10237-020-01367-8


Association in the course directory

BD2II

Last modified: Mo 30.09.2024 16:07