Warning! The directory is not yet complete and will be amended until the beginning of the term.
400016 SE Regression models for categorical data (2022S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Tu 01.02.2022 09:00 to We 23.02.2022 23:59
- Deregistration possible until Th 31.03.2022 23:59
Details
max. 15 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 08.03. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 15.03. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 22.03. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 29.03. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 05.04. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 26.04. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 03.05. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 10.05. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 17.05. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 24.05. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 31.05. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 14.06. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 21.06. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
- Tuesday 28.06. 16:45 - 18:15 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
Assessment and permitted materials
The final grade will be calculated as the weighted average of the following assignments:
- multiple-choice quizzes (20%),
- class worksheets (20%),
- research outline (20%),
- final paper (40%).
- multiple-choice quizzes (20%),
- class worksheets (20%),
- research outline (20%),
- final paper (40%).
Minimum requirements and assessment criteria
Students should attend at least 80% of the sessions.Students will be assessed based on their knowledge and understanding of quantitative methods as well as their ability to conduct and write up their independent analysis.87-100 points: Very good (1)
75-86 points: Good (2)
63-74 points: Satisfactory (3)
50-62 points: Sufficient (4)
0-49 points: Not sufficient (5)
75-86 points: Good (2)
63-74 points: Satisfactory (3)
50-62 points: Sufficient (4)
0-49 points: Not sufficient (5)
Examination topics
Reading list
- Gelman, A., & Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. New York: Cambridge University Press.
- King, G. (1989). Unifying Political Methodology: The Likelihood Theory of Statistical Inference. Ann Arbor: University of Michigan Press.
- Long, S. J. (1997). Regression Models for Categorical and Limited Dependent Variables. Advanced Quantita-tive Techniques in the Social Sciences. Thousand Oaks: Sage Publications.
- King, G. (1989). Unifying Political Methodology: The Likelihood Theory of Statistical Inference. Ann Arbor: University of Michigan Press.
- Long, S. J. (1997). Regression Models for Categorical and Limited Dependent Variables. Advanced Quantita-tive Techniques in the Social Sciences. Thousand Oaks: Sage Publications.
Association in the course directory
Last modified: Tu 08.03.2022 15:09
By the end of this course, participants will be able to analyze different types of categorical data using regres-sion techniques widely used in the Social Sciences. They will have a solid understanding of the statistical foundations of these models. They will also be able to interpret those models correctly and apply them to their own work.Prior knowledge of linear regression and the familiarity with any statistical software will be helpful but are not required in order to complete the course successfully.