Warning! The directory is not yet complete and will be amended until the beginning of the term.
400018 SE Hierarchical Modelin for Social Scientists' (2017W)
SE Methods for Doctoral Candidates
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Fr 01.09.2017 08:00 to We 27.09.2017 17:00
- Registration is open from We 10.01.2018 08:00 to Mo 15.01.2018 13:00
- Deregistration possible until Su 21.01.2018 13:00
Details
max. 15 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 22.01. 09:00 - 12:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Monday 22.01. 14:00 - 16:30 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Tuesday 23.01. 09:00 - 12:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Tuesday 23.01. 13:00 - 15:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Wednesday 24.01. 09:00 - 12:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Wednesday 24.01. 14:00 - 16:30 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Thursday 25.01. 09:00 - 12:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Thursday 25.01. 15:15 - 17:45 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Friday 26.01. 09:00 - 12:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
Final test (70%) and participation during course (30%)
Examination topics
Reading list
Gelman and Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models
Association in the course directory
Last modified: Mo 07.09.2020 15:47
- Interactions with dichotomous variables.
- Binary models.• Lab I- Introduction to RStudio.
- Reading in data and manipulating it.
- Estimating linear models.• 2.. Linear Hierarchical Modeling- What ate random effects?
- Varying intercept models.
- Models with systematically varying intercepts.
- Measures of model quality.• Lab II
- Implementing all learned concepts from part 2 in RStudio
• 3. Hierarchical Modeling with Cross-Level Interactions- Hierarchical modeling with cross-level interactions.
- Hierarchical modeling with binary models.
- Non-nested models.• Lab III- Implementing all learned concepts from part 3 in R• 4. Advanced Topics - Multilevel Regression and Post-Stratification (MrP)- Survey methods for sample selection.
- How hierarchical modeling can help (--+ MrP).
- Further developments: Deep interactions, synthetic post-stratification (MrsP).• Lab IV- Estimating response rriodels.- Weighting predicted probabilities for ideal types.
- Generating small sample measurements.• 5. Advanced Topics - Bayesian Hierarchical Modeling- Quick theoretical introduction to Bayesian statistics.
- How and when can a Bayesian model outperform frequentist apporaches?• Lab V- Setting up a model in Stan.
- Re-estimating prior models with convergence problems.