400022 SE Text analysis in R (2019S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 04.02.2019 09:00 to Th 28.02.2019 17:00
- Deregistration possible until Su 31.03.2019 09:38
Details
max. 15 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
Lehrender: Wouter van Atteveldt (University of Amsterdam)
- Monday 08.04. 09:00 - 12:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Monday 08.04. 14:00 - 16:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Tuesday 09.04. 09:00 - 11:15 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Tuesday 09.04. 13:30 - 16:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Wednesday 10.04. 09:00 - 13:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Thursday 11.04. 09:00 - 12:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Thursday 11.04. 14:00 - 16:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Friday 12.04. 09:00 - 12:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
- Friday 12.04. 14:00 - 16:00 C0628A Besprechung SoWi, NIG Universitätsstraße 7/Stg. III/6. Stock, 1010 Wien
Information
Aims, contents and method of the course
Assessment and permitted materials
Evaluation will be based on a small in-class written quiz (10%), a practical assignment to be handed in on Wednesday (20%), and a larger project on a topic of you choice to be handed in after the last class (70%).
Minimum requirements and assessment criteria
Examination topics
Reading list
Course Literature:
- Welbers, K., Wouter van Atteveldt, and Ken Benoit (2017), Text Analysis in R. Communication Methods and Measures, 11 (4), 245-265, doi: 10.1080/19312458.2017.1387238
- Wickham, H., & Grolemund, G. (2016). R for data science: import, tidy, transform, visualize, and model data. " O'Reilly Media, Inc.".Background literature:
- Wouter van Atteveldt and Tai-Quan Peng (2018), When Communication Meets Computation: Opportunities, Challenges, and Pitfalls in Computational Communication Science, Communication Methods and Measures 12 (2-3), pp. 81-92.
- Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. In Advances in neural information processing systems(pp. 288-296).
- Denny, M. J., & Spirling, A. (2018). Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it. Political Analysis, 26(2), 168-189.
- Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political analysis, 21(3), 267-297.
- Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder‐Luis, J., Gadarian, S. K., ... & Rand, D. G. (2014). Structural Topic Models for Open‐Ended Survey Responses. American Journal of Political Science, 58(4), 1064-1082.
- Young, L., & Soroka, S. (2012). Affective news: The automated coding of sentiment in political texts. Political Communication, 29(2), 205-231.
- Welbers, K., Wouter van Atteveldt, and Ken Benoit (2017), Text Analysis in R. Communication Methods and Measures, 11 (4), 245-265, doi: 10.1080/19312458.2017.1387238
- Wickham, H., & Grolemund, G. (2016). R for data science: import, tidy, transform, visualize, and model data. " O'Reilly Media, Inc.".Background literature:
- Wouter van Atteveldt and Tai-Quan Peng (2018), When Communication Meets Computation: Opportunities, Challenges, and Pitfalls in Computational Communication Science, Communication Methods and Measures 12 (2-3), pp. 81-92.
- Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei, D. M. (2009). Reading tea leaves: How humans interpret topic models. In Advances in neural information processing systems(pp. 288-296).
- Denny, M. J., & Spirling, A. (2018). Text preprocessing for unsupervised learning: why it matters, when it misleads, and what to do about it. Political Analysis, 26(2), 168-189.
- Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political analysis, 21(3), 267-297.
- Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder‐Luis, J., Gadarian, S. K., ... & Rand, D. G. (2014). Structural Topic Models for Open‐Ended Survey Responses. American Journal of Political Science, 58(4), 1064-1082.
- Young, L., & Soroka, S. (2012). Affective news: The automated coding of sentiment in political texts. Political Communication, 29(2), 205-231.
Association in the course directory
Last modified: Mo 07.09.2020 15:47
Course outline per day (a=morning, b=afternoon):
1. Introduction to R
a. R, Rstudio, variables, data, functions, packages
b. Inspirational: analysing and visualizing simple data
2. R for data analysis
a. Organizing and cleaning data with tidyverse
b. Aggregating, tabulating, and visualizing data
3. Quantitative text analysis in R
a. Simple quantitative text analysis: Reading, cleaning, and preprocessing text with quanteda and readtext
4. Scraping and cleaning text
a. Dictionary-based text analysis
b. API’s: scraping twitter, nytimes and friends
5. Advanced text analysis
a. LDA and structural topic models
b. Supervised machine learning and scaling