Universität Wien

442501 VO Migration-selection models in population genetics (2014W)

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 09.10. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 16.10. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 23.10. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 30.10. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 06.11. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 13.11. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 20.11. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 27.11. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 04.12. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.12. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 18.12. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 08.01. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 15.01. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 22.01. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 29.01. 15:00 - 15:45 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The population genetics theory of spatially structured populations evolving subject to selection, migration, or random drift will be developed. In introductory chapters, the theory of populations inhabiting discrete niches will be treated. The corresponding models are formulated mainly in terms of systems of difference equations or ordinary differential equations. The main focus will be on models in which individuals disperse in continuous space. In the simplest case, such models can be formulated by reaction-diffusion equations, i.e., parabolic PDEs. Special emphasis will be on the theory of clines, i.e., of stable stationary, spatially inhomogeneous distributions which reflect local adaptation to the heterogeneous habitat. Other special cases include Fisher’s equation for they wave-like advance of advantageous genes. The lecture course will be most suitable for Master or PhD students with a good background in differential equations and a sincere interest in modeling and applications.

Assessment and permitted materials

Oral or written exam.

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

MBIV

Last modified: Sa 26.02.2022 00:29