442502 VU Numerical Methods for Partial Differential Equations (2015S)
Continuous assessment of course work
Labels
Details
Language: English
Lecturers
Classes (iCal) - next class is marked with N
-
Tuesday
03.03.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 05.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
10.03.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
17.03.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 19.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
24.03.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 26.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
14.04.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 16.04. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
21.04.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 23.04. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
28.04.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 30.04. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
05.05.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 07.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
12.05.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
19.05.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 21.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 28.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
02.06.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock -
Tuesday
09.06.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 11.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
16.06.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 18.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
23.06.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock - Thursday 25.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
-
Tuesday
30.06.
09:45 - 11:45
PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The course mainly focuses on Finite Element Methods for the numerical approximation of Partial Differential Equations. Three aspects of the finite element method will be considered: i) theoretical foundations, ii) examples of applications to the numerical approximation of partial differential equations arising in different application domains, iii) implementation details. After revising some basic concepts in functional analysis, finite element methods for the Poisson problem will be introduced; their stability and error analysis, as well as the basic tools for their implementation, will be presented. Then, finite element approximations of the heat equation, of the Helmholtz problem and of advection-dominated advection-diffusion problems will be considered, discussing the respective specific issues. At the same time, finite element codes will be developed in the computer laboratory. The last part of this course, depending on the students' interests, might concern with either other applications (fluid mechanics, electromagnetics, elasticity), or non standard finite element methods (as discontinuous Galerkin methods), or domain decomposition techniques.Course webpage: http://mat.univie.ac.at/~perugia/TEACHING/NMPDESS2015/nmpde2015.html
Assessment and permitted materials
Final exam and course work (homework and labs; either presentation or hand out, depending
on the group size).
on the group size).
Minimum requirements and assessment criteria
Presenting theoretical and numerical aspects of Finite Element Methods for the numerical approximation of Partial Differential Equations arising from different applications, from theoretical stability and error analysis, to implementation.
Examination topics
Lectures, computer laboratories.
Reading list
Suggested reading: A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014. Other material will be distributed during the course.
Association in the course directory
MAMV, MANV
Last modified: Mo 07.09.2020 15:47