Universität Wien

442502 VU Numerical Methods for Partial Differential Equations (2015S)

Continuous assessment of course work

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 03.03. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 05.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 10.03. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.03. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 19.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 24.03. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 26.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 14.04. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 16.04. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 21.04. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 23.04. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 28.04. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 30.04. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 05.05. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 07.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 12.05. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 19.05. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 21.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 28.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 02.06. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 09.06. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 11.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 16.06. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 18.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 23.06. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Thursday 25.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 30.06. 09:45 - 11:45 PC-Seminarraum 2 Oskar-Morgenstern-Platz 1 1.Untergeschoß
    Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The course mainly focuses on Finite Element Methods for the numerical approximation of Partial Differential Equations. Three aspects of the finite element method will be considered: i) theoretical foundations, ii) examples of applications to the numerical approximation of partial differential equations arising in different application domains, iii) implementation details. After revising some basic concepts in functional analysis, finite element methods for the Poisson problem will be introduced; their stability and error analysis, as well as the basic tools for their implementation, will be presented. Then, finite element approximations of the heat equation, of the Helmholtz problem and of advection-dominated advection-diffusion problems will be considered, discussing the respective specific issues. At the same time, finite element codes will be developed in the computer laboratory. The last part of this course, depending on the students' interests, might concern with either other applications (fluid mechanics, electromagnetics, elasticity), or non standard finite element methods (as discontinuous Galerkin methods), or domain decomposition techniques.

Course webpage: http://mat.univie.ac.at/~perugia/TEACHING/NMPDESS2015/nmpde2015.html

Assessment and permitted materials

Final exam and course work (homework and labs; either presentation or hand out, depending
on the group size).

Minimum requirements and assessment criteria

Presenting theoretical and numerical aspects of Finite Element Methods for the numerical approximation of Partial Differential Equations arising from different applications, from theoretical stability and error analysis, to implementation.

Examination topics

Lectures, computer laboratories.

Reading list

Suggested reading: A. Quarteroni, Numerical Models for Differential Problems, Springer, 2014. Other material will be distributed during the course.

Association in the course directory

MAMV, MANV

Last modified: Mo 07.09.2020 15:47