Universität Wien

442504 VO Geometric and asymptotic group theory (2013W)

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 08.10. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 15.10. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 22.10. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.10. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 05.11. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 12.11. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 19.11. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 26.11. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 03.12. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 10.12. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.12. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 07.01. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 14.01. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 21.01. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 28.01. 10:00 - 12:00 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

The purpose of this course is to give an elementary introduction to RAAGs. A right-angled Artin group (or briefly, a RAAG), also known as a partially commutative group (or a PC-group), associated to a graph is the group generated by the vertex set of the graph with commutation relators between adjacent vertices. That is, to specify a right-angled Artin group, it suffices to specify the graph. Right-angled Artin groups arise naturally in several branches of mathematics and computer science. They have an extremely rich structure of subgroups which was explored in very recent proofs of 2 famous conjectures:

Baumslag's conjecture’67: Every 1-relator group with torsion is residually finite.

Virtual Haaken conjecture’(Waldhausen’68): Every aspherical closed 3-manifold has a finite cover which is Haken.

The course is open to students of all degrees (Bachelor, Master or PhD). The knowledge of the following fundamental concepts is required: graph, group, algebra, presentation of a group by generators and relators, fundamental group, covering space.

Assessment and permitted materials

Presentation or test.

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

MALV

Last modified: Mo 07.09.2020 15:47