Universität Wien

510005 SE Harmonic Analysis (VSM) (2024W)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Tuesday 01.10. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 08.10. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 15.10. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 22.10. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 29.10. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 05.11. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 12.11. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 19.11. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 26.11. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 03.12. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 17.12. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 07.01. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 14.01. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 21.01. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
  • Tuesday 28.01. 11:30 - 13:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Active participation and seminar presentation

Assessment and permitted materials

To obtain a grade, participants should attend the seminar regularly and give a presentation on a suitable topic in harmonic analysis.

Minimum requirements and assessment criteria

Active participation and seminar presentation. Assistance is mandatory. Students cannot miss more than two appointments, and these absences need to be excused in advance (e.g., by email to the teacher).

Examination topics

Related to the presentations.

Reading list

- Bownik, M., Londner, I., On syndetic Riesz sequences. Isr. J. Math. 233, No. 1, 113-131 (2019).
- Kozma, G., Nitzan, S., Olevskiˇı, A., A set with no Riesz basis of exponentials. Rev. Mat. Iberoam. 39, No. 6, 2007-2016 (2023).
- Kozma, G., Nitzan, S., Combining Riesz bases. Invent. Math. 199, No. 1, 267-285 (2015).
- Landau, H. J., Necessary density conditions for sampling an interpolation of certain entire functions. Acta Math. 117, 37-52 (1967).
- Matei, B; Meyer, Y, A variant of compressed sensing. Rev. Mat. Iberoam. 25, No. 2, 669-692 (2009).
- Nitzan, S., Olevskii, A., Revisiting Landau’s density theorems for Paley-Wiener spaces. C. R., Math., Acad. Sci. Paris 350, No. 9-10, 509-512 (2012).
- A. Olevskii, A. Ulanovskii, Functions with Disconnected Spectrum, University Lecture Series 65. Providence, RI: American Mathematical Society (AMS). x, 138 p. (2016).

Association in the course directory

MANS; MAMS

Last modified: Tu 12.11.2024 15:06