562412 VO Computer algebra (2005S)
Computer algebra
Labels
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 08.03. 15:00 - 17:00 Seminarraum
- Thursday 10.03. 15:00 - 17:00 Seminarraum
- Tuesday 15.03. 15:00 - 17:00 Seminarraum
- Thursday 17.03. 15:00 - 17:00 Seminarraum
- Tuesday 05.04. 15:00 - 17:00 Seminarraum
- Thursday 07.04. 15:00 - 17:00 Seminarraum
- Friday 08.04. 11:00 - 13:00 Seminarraum
- Tuesday 12.04. 15:00 - 17:00 Seminarraum
- Thursday 14.04. 15:00 - 17:00 Seminarraum
- Friday 15.04. 11:00 - 13:00 Seminarraum
- Tuesday 19.04. 15:00 - 17:00 Seminarraum
- Thursday 21.04. 15:00 - 17:00 Seminarraum
- Friday 22.04. 11:00 - 13:00 Seminarraum
- Tuesday 26.04. 15:00 - 17:00 Seminarraum
- Thursday 28.04. 15:00 - 17:00 Seminarraum
- Friday 29.04. 11:00 - 13:00 Seminarraum
- Tuesday 03.05. 15:00 - 17:00 Seminarraum
- Tuesday 10.05. 15:00 - 17:00 Seminarraum
- Thursday 12.05. 15:00 - 17:00 Seminarraum
- Thursday 19.05. 15:00 - 17:00 Seminarraum
- Tuesday 24.05. 15:00 - 17:00 Seminarraum
- Tuesday 31.05. 15:00 - 17:00 Seminarraum
- Thursday 02.06. 15:00 - 17:00 Seminarraum
- Tuesday 07.06. 15:00 - 17:00 Seminarraum
- Thursday 09.06. 15:00 - 17:00 Seminarraum
- Tuesday 14.06. 15:00 - 17:00 Seminarraum
- Thursday 16.06. 15:00 - 17:00 Seminarraum
- Tuesday 21.06. 15:00 - 17:00 Seminarraum
- Thursday 23.06. 15:00 - 17:00 Seminarraum
- Tuesday 28.06. 15:00 - 17:00 Seminarraum
- Thursday 30.06. 15:00 - 17:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
Examination topics
Reading list
1.) von zur Gathen, Joachim; Gerhard, Jürgen:
Modern computer algebra. 1999.
2.) Forster, Otto: Algorithmische Zahlentheorie. 1996.
3.) Buchmann, Johannes A.: Introduction to cryptography. 2004.
4.) Sturmfels, Bernd: Solving systems of polynomial equations. 2002
5.) Cox, David; Little, John; O'Shea, Donal: Ideals,
Varieties and Algorithms. 1997.
Modern computer algebra. 1999.
2.) Forster, Otto: Algorithmische Zahlentheorie. 1996.
3.) Buchmann, Johannes A.: Introduction to cryptography. 2004.
4.) Sturmfels, Bernd: Solving systems of polynomial equations. 2002
5.) Cox, David; Little, John; O'Shea, Donal: Ideals,
Varieties and Algorithms. 1997.
Association in the course directory
Last modified: Mo 07.09.2020 15:48
of computer algebra are numbers and polynomials.
We concentrate on topics in algorithmic number theory and on Groebner bases to solve systems of polynomial equations. We will also treat CACs, in particular pari gp and reduce. There will be sessions in the computer room.
The syllabus is as follows:1.) The Euclidean algorithm- The classical Euclidean algorithm
- The extended Euclidean Algorithm
- Cost analysis
- Modular inverses, linear Diophantine equations
- The Chinese Remainder algorithm2.) Factorization of polynomials- Squarefree factorization
- Berlekamp's algorithm
- The iterated Frobenius algorithm
- Testing irreducibility
- The Hensel Lifting3.) Primality Testing- The Fermat test
- Strong pseudoprimality test
- Finding primes
- The Solovay-Strassen test
- The Miller-Rabin test
- The complexity of primality testing4.) Faktorization of integers- Pollard's rho-method
- Pollard's (p-1)-method
- Lenstra's elliptic curve method5.) Public key Cryprography- The RSA cryptosystem
- The Diffie-Hellman key exchange protocol
- The ElGamal cryptosystem
- Elliptic curves6.) Groebner Bases- Polynomial ideals
- Monomial ideals and Hilbert's basis theorem
- Buchberger's algorithm