Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

800486 VO Classical groups (2004S)

Classical groups

0.00 ECTS (4.00 SWS), UG99 Mathematik

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 11.03. 09:00 - 11:00 Seminarraum
  • Thursday 18.03. 09:00 - 11:00 Seminarraum
  • Friday 19.03. 09:00 - 11:00 Seminarraum
  • Thursday 25.03. 09:00 - 11:00 Seminarraum
  • Friday 26.03. 09:00 - 11:00 Seminarraum
  • Thursday 01.04. 09:00 - 11:00 Seminarraum
  • Friday 02.04. 09:00 - 11:00 Seminarraum
  • Thursday 22.04. 09:00 - 11:00 Seminarraum
  • Friday 23.04. 09:00 - 11:00 Seminarraum
  • Thursday 29.04. 09:00 - 11:00 Seminarraum
  • Friday 30.04. 09:00 - 11:00 Seminarraum
  • Thursday 06.05. 09:00 - 11:00 Seminarraum
  • Friday 07.05. 09:00 - 11:00 Seminarraum
  • Thursday 13.05. 09:00 - 11:00 Seminarraum
  • Friday 14.05. 09:00 - 11:00 Seminarraum
  • Friday 21.05. 09:00 - 11:00 Seminarraum
  • Thursday 27.05. 09:00 - 11:00 Seminarraum
  • Friday 28.05. 09:00 - 11:00 Seminarraum
  • Thursday 03.06. 09:00 - 11:00 Seminarraum
  • Friday 04.06. 09:00 - 11:00 Seminarraum
  • Friday 11.06. 09:00 - 11:00 Seminarraum
  • Thursday 17.06. 09:00 - 11:00 Seminarraum
  • Friday 18.06. 09:00 - 11:00 Seminarraum
  • Thursday 24.06. 09:00 - 11:00 Seminarraum
  • Friday 25.06. 09:00 - 11:00 Seminarraum

Information

Aims, contents and method of the course

The notion "classical groups" is due to H. Weyl who marked certain families of groups of linear transformations with this name. It pertains to matrix groups of invertible linear transformations on vector spaces (over an arbitrary field)and its subgroups which leave invariant a non-degenerate symmetric or skew-symmetric bilinearform. These groups play an important role in mathematics and mathematical physics. Beside the basic material (algebras, involutions on central simple algebras, quadratic spaces, Clifford algebras) forms of classical groups are treated as well. The lectures can be viewed as an introduction into the theory of algebraic groups.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list

Jean Dieudonne, La geometrie des groupes classiques, 2 nd edition 1983
M.-A. Knus, A. Merkurijev,M. Rost, J.-P. Tignol, The book of involutions,American Mathematical Society 1998

Association in the course directory

Currently no association information is available.

Last modified: Mo 07.09.2020 15:50