Universität Wien

803766 VO Introduction into topology (2004W)

Introduction into topology

0.00 ECTS (2.00 SWS), UG02 SPL 25 - Mathematik

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 04.10. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 05.10. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 11.10. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 12.10. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 18.10. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 19.10. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 25.10. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 26.10. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 01.11. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 08.11. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 09.11. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 16.11. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 22.11. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 23.11. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 29.11. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 30.11. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 06.12. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 07.12. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 13.12. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 14.12. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 10.01. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 11.01. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 17.01. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 18.01. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 24.01. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Tuesday 25.01. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum
  • Monday 31.01. 10:15 - 11:00 Hörsaal 2 Eduard Suess, 2A122 1.OG UZA II Geo-Zentrum

Information

Aims, contents and method of the course

In this lecture (forming a non-separable unit together with the corresponding proseminar 878178), the basic notions of set-theoretic
topology will be presented. We will build upon the relevant pre-knowledge from the lectures on analysis of one and several (real) variables where convergence, continuity, open and closed sets as well as compactness have already played a prominent rôle. The general frame for
notions like these, being the basis of indispensable tools in nearly every field of mathematics, is provided by (metric and) topological spaces.

The content of the lecture is centered around the core notions TC^3 (sometimes also TC^4: topology; [convergence,] continuity, compactness, connectedness). Of course, also metric spaces will receive due attention, as a source of examples for the general case of topological spaces and, moreover, with respect to their specific features.

Assessment and permitted materials

Minimum requirements and assessment criteria

the obvious ones

Examination topics

as to content: all mathematical techniques
as to organizing the process of teaching and learning: see

http://www.mat.univie.ac.at/studentinfo/studienplan/Studienplan-Diplom3.html

Reading list

J. Cigler, H.C.Reichel: Topologie - Eine Grundvorlesung, BI Hochschultaschenbücher 121, Bibliographisches
Institut, Mannheim, 1987.

K. Jänich: Topologie, Springer-Lehrbuch, Springer-Verlag, Berlin, 1994. x+239 pp.
http://www.univie.ac.at/NuHAG/FEICOURS/TOPOLOG/jaenich.htm

B. von Querenburg: Mengentheoretische Topologie, Hochschultext. Springer-Verlag, Berlin-New
York, 1979. x+209 pp.
http://www.univie.ac.at/NuHAG/FEICOURS/TOPOLOG/queren3.htm

A famous classic reference:

R. Engelking, General topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989. viii+529 pp.

Association in the course directory

Currently no association information is available.

Last modified: Th 31.10.2024 00:21