877842 SE Tensors in Mathematics and Physics (2004S)
Seminar (Algebra): Tensors in Mathematics and Physics
Continuous assessment of course work
Labels
Summary
Registration/Deregistration
Groups
Group 1
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 04.03. 13:30 - 15:00 Seminarraum
- Thursday 11.03. 13:30 - 15:00 Seminarraum
- Thursday 18.03. 13:30 - 15:00 Seminarraum
- Thursday 25.03. 13:30 - 15:00 Seminarraum
- Thursday 01.04. 13:30 - 15:00 Seminarraum
- Thursday 22.04. 13:30 - 15:00 Seminarraum
- Thursday 29.04. 13:30 - 15:00 Seminarraum
- Thursday 06.05. 13:30 - 15:00 Seminarraum
- Thursday 13.05. 13:30 - 15:00 Seminarraum
- Thursday 27.05. 13:30 - 15:00 Seminarraum
- Thursday 03.06. 13:30 - 15:00 Seminarraum
- Thursday 17.06. 13:30 - 15:00 Seminarraum
- Thursday 24.06. 13:30 - 15:00 Seminarraum
Group 2
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 11.03. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 18.03. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 25.03. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 01.04. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 22.04. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 29.04. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 06.05. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 13.05. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 27.05. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 03.06. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 17.06. 14:00 - 15:30 Büro Dipl./Diss.
- Thursday 24.06. 14:00 - 15:30 Büro Dipl./Diss.
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
siehe Inhalt
Examination topics
fachlich: Mathematikdidaktisch: siehe
http://www.mat.univie.ac.at/studentinfo/studienplan/Studienplan-Diplom3.html
http://www.mat.univie.ac.at/studentinfo/studienplan/Studienplan-Diplom3.html
Reading list
Jedes Buch der Mathematik bzw. Physik, in dem Aspekte des Tensorbegriffs behandelt werden.
Association in the course directory
Currently no association information is available.
Last modified: Mo 07.09.2020 15:50
incommensurable) notions of a tensor in the dialects of "pure" mathematics resp. physics, the participants are expected to arrive at a
unifying view of the algebraic and analytical aspects of tensors resp. tensor fields.