Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

877992 VO Commutative Algebra (2004W)

Commutative Algebra

0.00 ECTS (4.00 SWS), UG02 SPL 25 - Mathematik

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 07.10. 09:00 - 09:45 Seminarraum
  • Thursday 07.10. 09:55 - 10:40 Seminarraum
  • Friday 08.10. 09:00 - 09:45 Seminarraum
  • Friday 08.10. 09:55 - 10:40 Seminarraum
  • Thursday 14.10. 09:00 - 09:45 Seminarraum
  • Thursday 14.10. 09:55 - 10:40 Seminarraum
  • Friday 15.10. 09:00 - 09:45 Seminarraum
  • Friday 15.10. 09:55 - 10:40 Seminarraum
  • Thursday 21.10. 09:00 - 09:45 Seminarraum
  • Thursday 21.10. 09:55 - 10:40 Seminarraum
  • Friday 22.10. 09:00 - 09:45 Seminarraum
  • Friday 22.10. 09:55 - 10:40 Seminarraum
  • Thursday 28.10. 09:00 - 09:45 Seminarraum
  • Thursday 28.10. 09:55 - 10:40 Seminarraum
  • Friday 29.10. 09:00 - 09:45 Seminarraum
  • Friday 29.10. 09:55 - 10:40 Seminarraum
  • Thursday 04.11. 09:00 - 09:45 Seminarraum
  • Thursday 04.11. 09:55 - 10:40 Seminarraum
  • Friday 05.11. 09:00 - 09:45 Seminarraum
  • Friday 05.11. 09:55 - 10:40 Seminarraum
  • Thursday 11.11. 09:00 - 09:45 Seminarraum
  • Thursday 11.11. 09:55 - 10:40 Seminarraum
  • Friday 12.11. 09:00 - 09:45 Seminarraum
  • Friday 12.11. 09:55 - 10:40 Seminarraum
  • Thursday 18.11. 09:00 - 09:45 Seminarraum
  • Thursday 18.11. 09:55 - 10:40 Seminarraum
  • Friday 19.11. 09:00 - 09:45 Seminarraum
  • Friday 19.11. 09:55 - 10:40 Seminarraum
  • Thursday 25.11. 09:00 - 09:45 Seminarraum
  • Thursday 25.11. 09:55 - 10:40 Seminarraum
  • Friday 26.11. 09:00 - 09:45 Seminarraum
  • Friday 26.11. 09:55 - 10:40 Seminarraum
  • Thursday 02.12. 09:00 - 09:45 Seminarraum
  • Thursday 02.12. 09:55 - 10:40 Seminarraum
  • Friday 03.12. 09:00 - 09:45 Seminarraum
  • Friday 03.12. 09:55 - 10:40 Seminarraum
  • Thursday 09.12. 09:00 - 09:45 Seminarraum
  • Thursday 09.12. 09:55 - 10:40 Seminarraum
  • Friday 10.12. 09:00 - 09:45 Seminarraum
  • Friday 10.12. 09:55 - 10:40 Seminarraum
  • Thursday 16.12. 09:00 - 09:45 Seminarraum
  • Thursday 16.12. 09:55 - 10:40 Seminarraum
  • Friday 17.12. 09:00 - 09:45 Seminarraum
  • Friday 17.12. 09:55 - 10:40 Seminarraum
  • Thursday 13.01. 09:00 - 09:45 Seminarraum
  • Thursday 13.01. 09:55 - 10:40 Seminarraum
  • Friday 14.01. 09:00 - 09:45 Seminarraum
  • Friday 14.01. 09:55 - 10:40 Seminarraum
  • Thursday 20.01. 09:00 - 09:45 Seminarraum
  • Thursday 20.01. 09:55 - 10:40 Seminarraum
  • Friday 21.01. 09:00 - 09:45 Seminarraum
  • Friday 21.01. 09:55 - 10:40 Seminarraum
  • Thursday 27.01. 09:00 - 09:45 Seminarraum
  • Thursday 27.01. 09:55 - 10:40 Seminarraum
  • Friday 28.01. 09:00 - 09:45 Seminarraum
  • Friday 28.01. 09:55 - 10:40 Seminarraum

Information

Aims, contents and method of the course

Commutative algebra has emerged from algebraic number theory and algebraic geometry as well. The basic object in the former one is the ring of rational integers or, more generally, the ring of integers in an algebraic number field. The ring of polynomials in several variables over a field k is the prototype of commutative rings studied in algebraic geometry. The central notion in commuatative algebra is that of a prime ideal. It provides a
common generalization of the prime numbers in arithmetic and the points of affine algebraic varieties. The geometric notion of concentrating attention "near a point" has as its algebraic analogue in the process of localizing a
ring at a prime ideal. Thus, the concept of localization has a considerable impact on geometric questions. Contents:rings and ideals, modules, rings of fractions, primary decomposition, integral dependence, Noetherian and Artinian rings, Dedekind
domains. A substantial number of examples and applications to different fields in
mathematics and physics will be given.

Assessment and permitted materials

Minimum requirements and assessment criteria

Examination topics

Reading list


Association in the course directory

Currently no association information is available.

Last modified: Mo 07.09.2020 15:50