Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching and access tests can be found at https://studieren.univie.ac.at/en/info.

Warning! The directory is not yet complete and will be amended until the beginning of the term.

300128 VO Chromosome evolution in plants (2012W)

Chromosome evolution in flowering plants: From chromosome counting to chromosome painting

2.00 ECTS (1.00 SWS), SPL 30 - Biologie

Vorbesprechung: 3.10.2012, 11:00; Faculty Center of Biodiversity (Inst. f. Botanik), Rennweg 14, A-1030 Wien; ÜR3.

Lecture will be held blocked for 7 weeks (2 hours per week) on Wednesdays at 11:00.


Language: English

Examination dates



Currently no class schedule is known.


Aims, contents and method of the course

The purpose of the course is two-fold. First, it offers an overview of plant cytogenetic techniques: from traditional chromosome counting to more recently established techniques of chromosome painting (in situ hybridization) and immunocytochemistry. Second, it presents detailed and up-to-date information about plant chromosome structure (centromere, telomere etc.) and main types of DNA sequences used for cytogenetic analyses. The newest methods developed recently to analyse genome composition and to characterize different types of repetitive DNA is plant genomes (high-throughput sequencing) will also be introduced, examples (also from our own work) shown and discussed. The course introduces also types and consequences of chromosome rearrangements including polyploidy, in the context of chromosome evolution. The use of cytogenetic data (obtained from both classical and molecular cytogenetic studies) in inferring plant taxa relationships and in evolutionary studies of different plant groups will be discussed. The course will give the up-to-date overview of the state-of-art in the analyses of plant chromosomes.

Assessment and permitted materials

written exam

Minimum requirements and assessment criteria

- To present and discuss in details the structure, types and function of chromosomes, and to emphasize their role in evolutionary processes.
- To present most relevant case studies.
- To introduce most important cytogenetic and genomic techniques, including state of the art next generation sequencing, and to discuss their application for evolutionary cytogenetics of plants.

Examination topics


Reading list

1. Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London.
2. Fukui K. & Nakamya S. 1996. Plant chromosomes. Laboratory methods. CRC Press, Boca Raton.
3. Maluszynska J. (ed.) 1998. Plant cytogenetics. Silesian University Press, Katowice, Poland.
4. Schwarzacher T. & Heslop-Harrison P. 2000. Practical in situ hybridization. 2nd ed. BIOS, Oxford UK.
5. Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford University Press, New York, USA.
6. Singh R.J. 2003. Plant cytogenetics. CRC Press, Boca Raton.
7. Puertas M.J. & Naranjo T. (eds.) 2005. Plant cytogenetics. Karger, Basel.
8. Puertas M.J. & Naranjo T. (eds.) 2008. Reviews in plant cytogenetics. Karger, Basel.
9. Birchler J.A. & Pires J.C. (eds.) 2010. Advances in plant cytogenetics. Karger, Basel.

Association in the course directory

MPF II-2, MEV W-6, MGE III-2, PhD MB 3

Last modified: Mo 07.09.2020 15:43